Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Inherit Metab Dis ; 47(2): 289-301, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38146202

RESUMO

X-linked adrenoleukodystrophy (X-ALD) is a genetic neurodegenerative disorder caused by pathogenic variants in ABCD1, resulting in the accumulation of very-long-chain fatty acids (VLCFAs) in tissues. The etiology of X-ALD is unclear. Activated astrocytes play a pathological role in X-ALD. Recently, reactive astrocytes have been shown to induce neuronal cell death via saturated lipids in high-density lipoprotein (HDL), although how HDL from reactive astrocytes exhibits neurotoxic effects has yet to be determined. In this study, we obtained astrocytes from wild-type and Abcd1-deficient mice. HDL was purified from the culture supernatant of astrocytes, and the effect of HDL on neurons was evaluated in vitro. To our knowledge, this study shows for the first time that HDL obtained from Abcd1-deficient reactive astrocytes induces a significantly higher level of lactate dehydrogenase (LDH) release, a marker of cell damage, from mouse primary cortical neurons as compared to HDL from wild-type reactive astrocytes. Notably, HDL from Abcd1-deficient astrocytes contained significantly high amounts of VLCFA-containing phosphatidylcholine (PC) and LysoPC. Activation of Abcd1-deficient astrocytes led to the production of HDL containing decreased amounts of PC with arachidonic acid in sn-2 acyl moieties and increased amounts of LysoPC, presumably through cytosolic phospholipase A2 α upregulation. These results suggest that compositional changes in PC and LysoPC in HDL, due to Abcd1 deficiency and astrocyte activation, may contribute to neuronal damage. Our findings provide novel insights into central nervous system pathology in X-ALD.


Assuntos
Adrenoleucodistrofia , Camundongos , Animais , Adrenoleucodistrofia/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Astrócitos/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Sistema Nervoso Central/metabolismo , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/genética
2.
Sci Adv ; 9(45): eadg4216, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37948516

RESUMO

Adiponectin receptors, AdipoR1 and AdipoR2 are promising targets for the prevention and treatment of metabolic diseases. In this study, we aimed to establish agonistic antibodies against AdipoR1 and AdipoR2 with a long enough half-life to provide a means of improving poor medication adherence associated with preclinical small-molecule AdipoR agonists or existing antidiabetic drugs. Monoclonal antibodies were obtained by immunizing AdipoR knockout mice with human AdipoR-expressing cells. Of the antibodies shown to bind to both, an agonist antibody was obtained, which exhibited adenosine 5'-monophosphate-activated protein kinase-activating properties such as adiponectin and was named AdipoR-activating monoclonal antibody (AdipoRaMab). AdipoRaMab ameliorated glucose intolerance in high-fat diet-fed mice, which was not observed in AdipoR1·AdipoR2 double knockout mice. AdipoRaMab exhibited anti-inflammatory and antifibrotic effects in the nonalcoholic steatohepatitis (NASH) model, indicating its therapeutic potential in diabetes and in NASH. In addition, the results of this study indicated that AdipoRaMab may exert therapeutic effects even in a once-monthly dosing regimen through its humanization.


Assuntos
Diabetes Mellitus Tipo 2 , Intolerância à Glucose , Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Camundongos Knockout
3.
Life Sci Alliance ; 6(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37263777

RESUMO

Nonalcoholic steatohepatitis (NASH) can lead to cirrhosis and hepatocellular carcinoma in their advanced stages; however, there are currently no approved therapies. Here, we show that microRNA (miR)-33b in hepatocytes is critical for the development of NASH. miR-33b is located in the intron of sterol regulatory element-binding transcription factor 1 and is abundantly expressed in humans, but absent in rodents. miR-33b knock-in (KI) mice, which have a miR-33b sequence in the same intron of sterol regulatory element-binding transcription factor 1 as humans and express miR-33b similar to humans, exhibit NASH under high-fat diet feeding. This condition is ameliorated by hepatocyte-specific miR-33b deficiency but unaffected by macrophage-specific miR-33b deficiency. Anti-miR-33b oligonucleotide improves the phenotype of NASH in miR-33b KI mice fed a Gubra Amylin NASH diet, which induces miR-33b and worsens NASH more than a high-fat diet. Anti-miR-33b treatment reduces hepatic free cholesterol and triglyceride accumulation through up-regulation of the lipid metabolism-related target genes. Furthermore, it decreases the expression of fibrosis marker genes in cultured hepatic stellate cells. Thus, inhibition of miR-33b using nucleic acid medicine is a promising treatment for NASH.


Assuntos
Neoplasias Hepáticas , MicroRNAs , Hepatopatia Gordurosa não Alcoólica , Camundongos , Humanos , Animais , Hepatopatia Gordurosa não Alcoólica/genética , Antagomirs , MicroRNAs/genética , MicroRNAs/metabolismo , Colesterol , Neoplasias Hepáticas/patologia , Fatores de Transcrição
4.
Biol Pharm Bull ; 45(11): 1725-1727, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36328509

RESUMO

X-linked Adrenoleukodystrophy (X-ALD) is a rare genetic neurological disorder caused by a mutation of the ABCD1 gene that encodes a peroxisomal ABC protein ABCD1. ABCD1 has a role in transporting very long chain fatty acid (VLCFA)-CoA into the peroxisome for ß-oxidation. ABCD1 dysfunction leads to reduced VLCFA ß-oxidation and in turn increased VLCFA levels in the plasma and the cells of all tissues; these increased plasma levels have been used to diagnose X-ALD. It has been reported that plasma VLCFA is not correlated with the severity and disease phenotype of X-ALD. Therefore, we cannot predict the disease progression by the plasma VLCFA level. Cerebrospinal fluid (CSF) is constantly produced by brain, and thus levels of lipids containing VLCFA in CSF might be informative in terms of assessing X-ALD pathology. LC-MS/MS-based analysis showed that phosphatidylcholine (PC) containing VLCFA signals, such as PC 40 : 0(24 : 0/16 : 0), PC 42 : 0(26 : 0/16 : 0), PC 44 : 4(24 : 0/20 : 4) and PC 46 : 4(26 : 0/20 : 4) were characteristically detected only in the CSF from patients with X- ALD. In the present study, we analyzed limited number of patient's CSF samples (2 patients with X-ALD) due to the limitations of the availability for CSF samples from this rare disease. However, our finding would offer helpful information for studying the disease progression biomarkers in X-ALD. To our knowledge, this is the first report of analyzing lipids containing VLCFA in CSF from patients with X-ALD.


Assuntos
Adrenoleucodistrofia , Humanos , Adrenoleucodistrofia/diagnóstico , Adrenoleucodistrofia/metabolismo , Cromatografia Líquida , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Ácidos Graxos/metabolismo , Espectrometria de Massas em Tandem , Ácidos Graxos não Esterificados , Lecitinas , Progressão da Doença
5.
Sci Rep ; 12(1): 11984, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35835906

RESUMO

Abdominal aortic aneurysm (AAA) is a lethal disease, but no beneficial therapeutic agents have been established to date. Previously, we found that AAA formation is suppressed in microRNA (miR)-33-deficient mice compared with wild-type mice. Mice have only one miR-33, but humans have two miR-33 s, miR-33a and miR-33b. The data so far strongly support that inhibiting miR-33a or miR-33b will be a new strategy to treat AAA. We produced two specific anti-microRNA oligonucleotides (AMOs) that may inhibit miR-33a and miR-33b, respectively. In vitro studies showed that the AMO against miR-33b was more effective; therefore, we examined the in vivo effects of this AMO in a calcium chloride (CaCl2)-induced AAA model in humanized miR-33b knock-in mice. In this model, AAA was clearly improved by application of anti-miR-33b. To further elucidate the mechanism, we evaluated AAA 1 week after CaCl2 administration to examine the effect of anti-miR-33b. Histological examination revealed that the number of MMP-9-positive macrophages and the level of MCP-1 in the aorta of mice treated with anti-miR-33b was significantly reduced, and the serum lipid profile was improved compared with mice treated with control oligonucleotides. These results support that inhibition of miR-33b is effective in the treatment for AAA.


Assuntos
Aneurisma da Aorta Abdominal , MicroRNAs , Animais , Antagomirs/metabolismo , Antagomirs/farmacologia , Antagomirs/uso terapêutico , Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/metabolismo , Cloreto de Cálcio/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo
6.
Biol Open ; 8(5)2019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-31097447

RESUMO

Iron overload in the liver causes oxidative stress and inflammation, which result in organ dysfunction, making it a risk factor for non-alcoholic steatohepatitis (NASH) and hepatocellular carcinoma. We aimed to evaluate the effect of dietary iron restriction on disease progression in rats fed a choline-deficient L-amino acid-defined (CDAA) diet. Male F344 rats were fed a choline-sufficient amino acid-defined (control) diet, a CDAA diet or an iron-restricted CDAA diet for 4, 8 and 12 weeks. At each time point, hepatic iron levels, oxidative stress, inflammation and fibrosis were evaluated by immunohistochemistry. The iron-restricted CDAA diet significantly decreased serum iron levels for 12 weeks compared with the CDAA diet. Histological analysis confirmed that feeding with the CDAA diet induced hepatic iron overload and that this was associated with oxidative stress (number of 8-hydroxydeoxyguanosine-positive cells), inflammation (CD68 positive area) and fibrosis (Sirius Red positive area). Iron restriction with the CDAA diet significantly led to a reduction in the hepatic iron levels, oxidative stress, inflammation and fibrosis. Therefore, dietary iron restriction could be a useful therapeutic approach for NASH patients with hepatic iron overload.

7.
Biol Open ; 8(5)2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31023717

RESUMO

Non-alcoholic steatohepatitis (NASH) is a fast-growing liver disease in the Western world. Currently, only a few animal models show both the metabolic and histological features of human NASH. We aimed to explore murine NASH models in a time dependent manner that exhibit metabolic, histological and transcriptomic hallmarks of human NASH. For this, the murine strains C57BL/6J, ob/ob, and KK-Ay were used and three types of nutritional regimes were administered: normal chow diet (NCD); high-fat, high-fructose, and high-cholesterol diet (fast food diet; FFD); or choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD), for 2, 4, 8, 12, 18, 24, and 30 weeks. All strains under the FFD and CDAHFD regimes developed steatohepatitis. Among the strains treated with FFD, the non-alcoholic fatty liver disease (NAFLD) activity score, fibrosis progression and metabolic abnormalities such as hyperinsulinemia and obesity were more pronounced in ob/ob mice than in C57BL/6J and KK-Ay mice. In ob/ob mice fed FFD, the development of hepatic crown-like structures was confirmed. Furthermore, molecular pathways involved in steatohepatitis and fibrosis showed significant changes from as early as 2 weeks of starting the FFD regime. Ob/ob mice fed FFD showed metabolic, histological, and transcriptomic dysfunctions similar to human NASH, suggesting their potential as an experimental model to discover novel drugs for NASH.

8.
J Pharmacol Sci ; 127(4): 456-61, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25892328

RESUMO

To assess the impact of concomitant inhibition of sodium-glucose cotransporter (SGLT) 2 and dipeptidyl peptidase IV (DPP4) for the treatment of type 2 diabetes mellitus (T2DM), the effect of combined treatment with canagliflozin, a novel SGLT2 inhibitor, and teneligliptin, a DPP4 inhibitor, on glucose intolerance was investigated in Zucker diabetic fatty (ZDF) rats. Canagliflozin potently inhibited human and rat SGLT2 and moderately inhibited human and rat SGLT1 activities but did not affect DPP4 activity. In contrast, teneligliptin inhibited human and rat DPP4 activities but not SGLT activities. A single oral treatment of canagliflozin and teneligliptin suppressed plasma glucose elevation in an oral glucose tolerance test in 13 week-old ZDF rats. This combination of agents elevated plasma active GLP-1 levels in a synergistic manner, probably mediated by intestinal SGLT1 inhibition, and further improved glucose intolerance. In the combination-treated animals, there was no pharmacokinetic interaction of the drugs and no further inhibition of plasma DPP4 activity compared with that in the teneligliptin-treated animals. These results suggest that the inhibition of SGLT2 and DPP4 improves glucose intolerance and that combined treatment with canagliflozin and teneligliptin is a novel therapeutic option for glycemic control in T2DM.


Assuntos
Canagliflozina/farmacologia , Canagliflozina/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Intolerância à Glucose/tratamento farmacológico , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Pirazóis/farmacologia , Pirazóis/uso terapêutico , Tiazolidinas/farmacologia , Tiazolidinas/uso terapêutico , Administração Oral , Animais , Canagliflozina/administração & dosagem , Células Cultivadas , Cricetinae , Cricetulus , Diabetes Mellitus Tipo 2/sangue , Dipeptidil Peptidase 4/metabolismo , Inibidores da Dipeptidil Peptidase IV/administração & dosagem , Inibidores da Dipeptidil Peptidase IV/farmacologia , Quimioterapia Combinada , Peptídeo 1 Semelhante ao Glucagon/sangue , Humanos , Hipoglicemiantes/administração & dosagem , Masculino , Pirazóis/administração & dosagem , Ratos Zucker , Transportador 1 de Glucose-Sódio/antagonistas & inibidores , Transportador 2 de Glucose-Sódio , Inibidores do Transportador 2 de Sódio-Glicose , Tiazolidinas/administração & dosagem
9.
J Cardiovasc Pharmacol ; 48(4): 177-83, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17086097

RESUMO

Oxidative modification of low-density lipoprotein (LDL) has been implicated in the pathogenesis of atherosclerosis. In this study, we investigated the effects of antioxidants including probucol, vitamin E, and fluvastatin, an HMG-CoA (hydroxy-3-methylglutaryl coenzyme A) reductase inhibitor with antioxidative property, on plasma levels of oxidized LDL (OxLDL) during the progression of atherosclerosis in Watanabe heritable hyperlipidemic (WHHL) rabbits. OxLDL were measured as ligand for lectin-like OxLDL receptor-1 (LOX-1). LOX-1-ligand was higher in WHHL rabbits than in control rabbits as early as 2 months of age and was sustained throughout the experimental period. Supplementation of probucol (1%) and vitamin E (0.5%) to the diet reduced LOX-1-ligand but had little effect on total cholesterol (T-CHO). Fluvastatin (0.03%) significantly reduced both LOX-1-ligand and T-CHO. The extent of reduction in T-CHO was less prominent than in the case of LOX-1-ligand. All of the agents reduced the atherosclerotic lesion area and lipid contents of aortic arches. These parallel results indicate that oxidatively modified LDL elevated in the early stages of atherogenesis is of functional importance in the progression of the disease and can be suppressed by antioxidant treatment. Furthermore, fluvastatin may reduce the evolution of atherosclerosis, not only by lowering plasma cholesterol but also by reducing oxidative modification of LDL.


Assuntos
Antioxidantes/farmacologia , Aterosclerose/prevenção & controle , Receptores Depuradores Classe E/sangue , Animais , Colesterol/sangue , Ácidos Graxos Monoinsaturados/farmacologia , Fluvastatina , Indóis/farmacologia , Ligantes , Lipoproteínas LDL/fisiologia , Masculino , Coelhos , Receptores Depuradores Classe E/fisiologia , Vitamina E/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...